
package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChan-
nel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPoll-
Channel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerComple-
teChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin",
func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err !=
nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool);
statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE");
}; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";
"strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan
bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel:
respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status;
}}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("tar-
get")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(-
time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIME-
OUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct
{ Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool);
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChan-
nel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPoll-
Channel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err :=
strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc
<- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.Response-
Writer, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.F-
print(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main;
import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel :=
make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel);
for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case
status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.Re-
sponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.F-
printf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count
%d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChan-
nel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case
<- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"
); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChan-
nel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive;
case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Parse-
Form(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("tar-
get"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <-
reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAnd-
Serve(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; };
func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(con-
trolChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go
doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool)
{http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormVal-
ue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w,
"Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request)
{ reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else
{ fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html";
"log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);work-
erCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan
:= <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerComple-
teChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Re-
quest) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error());
return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeS-
tring(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;-
timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout:
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type
ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel :=
make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case
msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Parse-
Form(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("tar-
get"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <-
reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAnd-
Serve(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; };
func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(con-
trolChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go
doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool)
{http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormVal-
ue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w,
"Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request)
{ reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else
{ fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };

WHITE PAPER

PRESENTED BY SPONSORED CONTENT FROM

 Credential Stuffing:
 How to Keep Criminals
 from Impacting
 Your Customers

1Credential Stuffing: How to Keep Criminals from Impacting Your Customers

Is that a customer logging into your website or a bot? Is that a good bot engaged in essential tasks or

a bad bot consuming so many resources that it impacts your customers’ ability to access your site?

Credential stuffing makes those questions difficult to answer. Credential stuffing is a targeted attack

against an organization’s website or an application. Criminals use bots — a string of connected

computers coordinated together — or scripted applications to automate login attempts with

compromised usernames and passwords in order to gain access to accounts.

Credential stuffing is a distinct part of the cybercrime economy, and for criminals, it’s a lucrative one.

For financial institutions, credential stuffing attacks are incredibly costly. In a 2017 study done with

Ponemon Institute, Akamai found that a single credential stuffing campaign could cost a financial

institution between $550,000 to $55 million USD including initial account remediation costs, customer

notifications, and regulatory fines.1

When financial services organizations notify their

customers about an incident that requires a change of

password, it can create such a negative experience that

some customers choose to take their business elsewhere,

resulting in lost revenue.

According to the Akamai 2019 State of the Internet /

Security Report, financial services is one of the most

highly targeted verticals for credential abuse attacks.2

The 2020 report found that nearly 20% of the 85,422,079,109 credential abuse attacks observed

between December 2017 and November 2019 target clearly identified APIs. Of those targeted APIs,

473,518,955 were in the financial services industry, representing a shift in criminal tactics.

For example, in just one massive credential stuffing campaign, a financial institution was bombarded

with 55,141,782 malicious login attempts. This attack was the largest spike in targeted credential abuse

Akamai has seen against a financial services organization since we’ve started tracking such attacks.

As criminals continue to improve their attack methods, it’s more difficult for financial institutions to

protect against credential stuffing. Distinguishing a bot from a human requires specialized, intelligent

security tools to detect credential stuffing attacks and keep the bad guys out, while letting the good

guys — your customers — in with as little friction as possible.

Billions of stolen and leaked data records help feed credential stuffing since these compromised data

records — with their associated passwords — are easy and cheap for criminals to access on the dark web.

As criminals continue to improve their
attack methods, it’s more difficult for
financial institutions to protect against
credential stuffing.

2Credential Stuffing: How to Keep Criminals from Impacting Your Customers

The attacker picks
targets, most likely based
on popularity, brand
reputation, and what
credentials are available
on the dark web.

Once the attacker determines
which credentials work,
they either login to the
accounts and take them over
for financial gain or resell
the validated credentials as
individual accounts on the
dark web.

Armed with a list of
stolen username and
password combinations,
the attacker uses a botnet
or automated tool to
repeatedly attempt to login
until they are successful.

A key issue leading to the growth of credential stuffing is the reuse of login credentials, or password

recycling. Customers often use the same credentials across multiple accounts, such as using the same

username and password for banking, email, loyalty programs, streaming media services, and retail

shopping — all of which are popular targets for criminals. A criminal possessing a valid reused credential

combination has the virtual keys to the customer’s kingdom, thus making every business susceptible to

credential stuffing, regardless of whether or not the targeted company has been breached.

Credential Stuffing: Tough to Detect
Credential stuffing is done stealthily, and since attackers often change the methods used to bypass

defenses and impersonate authorized customers, it’s difficult to detect. In a 2017 Ponemon Institute

report sponsored by Akamai, 32% of respondents say that they lack visibility into credential stuffing

attacks and 30% say they were unable to detect and mitigate attacks. Seventy percent (70%) say

their organization lacks credential stuffing defenses.3 The percentage of organizations vulnerable to

credential stuffing continues to rise.

However, it is fair to say that protecting against credential stuffing is a balancing act. What if the

customer simply mistyped a password? Customers who are mistakenly shut out of their accounts

understandably get frustrated and angry. False positives are a very real concern; it’s difficult to protect

against attacks without increasing customer friction and possibly losing revenue.

Indeed, the Ponemon study reports that 71% of respondents say that preventing credential stuffing

attacks is difficult because the fixes might diminish the web experience for legitimate customers.4

1 2 3

How Credential Stuffing Works
Credential stuffing is a multi-step process:

3Credential Stuffing: How to Keep Criminals from Impacting Your Customers

Bots are only part of the problem. Criminals also use

automated tools for attacks. In fact, Akamai detects tools

like Snipr, STORM, or Sentry MBA as part of our defenses.

These automated tools vary in sophistication. Some —

such as a single bot making repeated login attempts

from a single IP address — are easy to catch with standard

IP traffic management tools. Others are more difficult to

catch since the login attempts come from hundreds or

thousands of IP addresses.

During an attack, criminals will conduct reconnaissance and testing to determine the victim’s detection

thresholds, and modify attack rates as needed, such as sending a few login requests over a 24-hour

period, to stay below the radar. Other tactics include using disposable IP addresses, browser fingerprint

spoofing, and recorded human behavior to avoid detection. These techniques evolve daily.

How Bots Outsmart Traditional Tools
Since login information is legitimate, but a machine and not a person is attempting to login to the

account, traditional tools such as web application firewalls (WAF) focused on network or web-based

attacks won’t catch credential stuffing. Instead, financial institutions need specialized intelligent bot

detection and management tools to defend against credential stuffing.

While financial institutions have long used CAPTCHA in an attempt to limit credential stuffing success,

CAPTCHA increases customer friction. Customers are not enamored with typing out the distorted text

that appears on their screen or selecting all the boxes containing road signs to pass a test. In addition,

criminals can successfully trick CAPTCHA.5

Another protection method financial institutions use is rate limiting, which blocks IP addresses that

exceed a threshold for the maximum number of requests within a time frame. However, criminals

figure out the threshold and operate below it. If the financial institution limits login attempts to five,

criminals will attack in series of four attempts to avoid detection.

The Two-Pronged Solution: Detecting Credential Stuffing at Login
Combined with Customer Education
The most prudent credential stuffing protection is to prevent an attacker from validating credentials

by implementing defenses in front of consumer login endpoints and APIs. This approach, combined

with educating customers about good password hygiene, is a critical part of a strong foundation to

prevent credential stuffing.

During an attack, criminals will conduct
reconnaissance and testing to determine the
victim’s detection thresholds, and modify
attack rates as needed, such as sending a few
login requests over a 24-hour period, to stay
below the radar.

4Credential Stuffing: How to Keep Criminals from Impacting Your Customers

At Login: A Bot Management Solution

A bot management solution that protects against credential stuffing should complement your other

enterprise fraud management tools already in place, and easily integrate into the overall security

strategy. This provides defense in depth: if one security capability fails, the next capability in the chain

will stop it.

The most effective bot detection tools combine advanced behavior anomaly analysis and behavioral

telemetry with machine learning. For example, measurements from user input devices (i.e., mouse

movements, keyboard strokes, touch screen events, and gyroscope/accelerometer readings), can

distinguish between automated tools and humans. If the mobile device moves — ever so slightly —

it’s likely handled by a human. A perfectly straight mouse movement? This could be one of several

indicators pointing to a bot or automated access attempt.

The bot management solution should include both a WAF and protection from distributed denial

of service (DDoS) attacks. A traffic spike that appears to be a DDoS attack to take down your server,

may actually be a spike in login requests from credential stuffing. Comprehensive tools offering good

monitoring are the only way to determine the root cause.

Customer Education

Another proactive way to decrease credential stuffing

attempts starts with your customers. Educate customers

about the dangers of reusing passwords or using weak or

easily guessed passwords.6 PCMag found that 35% of users

don’t change their passwords unless prompted. Google

found that 52% of users reuse passwords for multiple

accounts—and an additional 13% use the same password for

all their accounts.7

And it’s not just customers. There have been media reports

about phone providers and other organizations — and even

the U.S. government — using 0000 or other easily guessed

passwords for their default router passwords.

Educate customers about the dangers of
reusing passwords or using weak or easily
guessed passwords.6 PCMag found that
35% of users don’t change their passwords
unless prompted. Google found that 52%
of users reuse passwords for multiple
accounts—and an additional 13% use the
same password for all their accounts.7

5Credential Stuffing: How to Keep Criminals from Impacting Your Customers

Stop Credential Stuffing in Its Tracks
Credential stuffing is difficult to detect, but that doesn’t mean financial institutions should sit back,

wait for an attack, and attempt to minimize the damages. Instead, financial institutions can stop

credential stuffing in its tracks at the point of login with a bot management tool that uses advanced

behavior anomaly analysis and behavioral telemetry–based tools.

Cybercrime such as credential stuffing continues to evolve — and a shortage of security talent makes

it difficult for financial institutions to find or afford the security expertise they need in-house. A better

approach is to work with an outside partner that has insights into constantly changing attack vectors

and the expertise to stop bots and automated tools before criminals can even attempt to login.

Stop Cybercrime from Credential Abuse:
11 Questions to Ask a Potential Vendor

Use these questions to find a bot management provider that can effectively protect your

financial institution from credential stuffing attacks:

1. How do you work with existing security and fraud teams?

2. Can you detect fraud across constantly changing attack vectors and geographies?

3. How does your tool scale to meet global demand?

4. What is the typical implementation timeline for your products and what integration

support do you offer?

5. Do you provide centralized management and situational awareness?

6. What security expertise and talent services do you offer?

7. Do you support customization and DevOps?

8. Do you meet financial industry compliance and privacy regulatory requirements?

9. How does your solution minimize customer friction and reduce false positives?

10. What is your innovation road map and your success rate in delivering on it?

11. How do you leverage threat intelligence and invest in research to optimize discovery?

6Credential Stuffing: How to Keep Criminals from Impacting Your Customers

SOURCES
1) https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html

2) https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf

3) https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html

4) https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html

5) https://www.wired.co.uk/article/google-captcha-recaptcha

6) https://www.pcmag.com/news/35-percent-of-people-never-change-their-passwords

7) http://services.google.com/fh/files/blogs/google_security_infographic.pdf

Akamai secures and delivers digital experiences for the world’s largest companies. Akamai’s intelligent edge platform surrounds
everything, from the enterprise to the cloud, so customers and their businesses can be fast, smart, and secure. Top brands globally rely
on Akamai to help them realize competitive advantage through agile solutions that extend the power of their multi-cloud architectures.
Akamai keeps decisions, apps, and experiences closer to users than anyone — and attacks and threats far away. Akamai’s portfolio of
edge security, web and mobile performance, enterprise access, and video delivery solutions is supported by unmatched customer
service, analytics, and 24/7/365 monitoring. To learn why the world’s top brands trust Akamai, visit akamai.com, blogs.akamai.com, or
@Akamai on Twitter. You can find our global contact information at akamai.com/locations. Published 05/20.

https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html
https://content.akamai.com/us-en-pg10079-the-cost-of-credential-stuffing.html
https://www.wired.co.uk/article/google-captcha-recaptcha
https://www.pcmag.com/news/35-percent-of-people-never-change-their-passwords
http://services.google.com/fh/files/blogs/google_security_infographic.pdf
http://www.akamai.com
http://blogs.akamai.com
http://www.twitter.com/akamai
http://www.akamai.com/locations

